Development of acetylcholine-induced responses in neonatal gerbil outer hair cells.
نویسندگان
چکیده
Cochlear outer hair cells (OHCs) are dominantly innervated by efferents, with acetylcholine (ACh) being their principal neurotransmitter. ACh activation of the cholinergic receptors on isolated OHCs induces calcium influx through the ionotropic receptors, followed by a large outward K+ current through nearby Ca2+-activated K+ channels. The outward K+ current hyperpolarizes the cell, resulting in the fast inhibitory effects of efferent action. Although the ACh receptors (AChRs) in adult OHCs have been identified and the ACh-induced current responses have been characterized, it is unclear when the ACh-induced current responses occur during development. In this study we attempt to address this question by determining the time of onset of the ACh-induced currents in neonatal gerbil OHCs, using whole cell patch-clamp techniques. Developing gerbils ranging in age from 4 to 12 days were used in these experiments, because efferent synaptogenesis and functional maturation of OHCs occur after birth. Results show that the first detectable ACh-induced current occurred at 6 days after birth (DAB) in 12% of the basal turn cells with a small outward current. The fraction of responsive cells and the size of outward currents increased as development progressed. By 11 DAB, the fraction of responsive cells and the current size were comparable with those of adult OHCs. The results indicate that the maturation of the ACh-induced response begins around 6 DAB. It appears that the development of ACh-induced responses occur during the same time period when OHCs develop motility but before the onset of auditory function, which is around 12 DAB when cochlear microphonic potentials can first be evoked with acoustic stimulation in gerbils.
منابع مشابه
The Effects of Urethane on Rat Outer Hair Cells
The cochlea converts sound vibration into electrical impulses and amplifies the low-level sound signal. Urethane, a widely used anesthetic in animal research, has been shown to reduce the neural responses to auditory stimuli. However, the effects of urethane on cochlea, especially on the function of outer hair cells, remain largely unknown. In the present study, we compared the cochlear microph...
متن کاملLateral wall protein content mediates alterations in cochlear outer hair cell mechanics before and after hearing onset.
Specialized outer hair cells (OHCs) housed within the mammalian cochlea exhibit active, nonlinear, mechanical responses to auditory stimulation termed electromotility. The extraordinary frequency resolution capacity of the cochlea requires an exquisitely equilibrated mechanical system of sensory and supporting cells. OHC electromotile length change, stiffness, and force generation are responsib...
متن کاملSpontaneous hair cell regeneration in the neonatal mouse cochlea in vivo.
Loss of cochlear hair cells in mammals is currently believed to be permanent, resulting in hearing impairment that affects more than 10% of the population. Here, we developed two genetic strategies to ablate neonatal mouse cochlear hair cells in vivo. Both Pou4f3(DTR/+) and Atoh1-CreER™; ROSA26(DTA/+) alleles allowed selective and inducible hair cell ablation. After hair cell loss was induced a...
متن کاملDevelopment of otoacoustic emissions in gerbil: evidence for micromechanical changes underlying development of the place code.
The development of the acoustic distortion product (ADP) 2f1-f2 was studied in gerbils, beginning 12 days after birth (P12). ADPs were measured as a function of stimulus frequency region (1.0 to 13.0 kHz) and level (10 to 80 dB SPL). There was an orderly progression in the appearance and maturation of the emissions, with responses to high-frequency stimuli (f2 = 13.0 kHz) appearing first, at P1...
متن کاملMuscarinic signaling in the cochlea: presynaptic and postsynaptic effects on efferent feedback and afferent excitability.
Acetylcholine is the major neurotransmitter of the olivocochlear efferent system, which provides feedback to cochlear hair cells and sensory neurons. To study the role of cochlear muscarinic receptors, we studied receptor localization with immunohistochemistry and reverse transcription-PCR and measured olivocochlear function, cochlear responses, and histopathology in mice with targeted deletion...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 81 3 شماره
صفحات -
تاریخ انتشار 1999